Lower bounds for the Chvátal-Gomory rank in the 0/1 cube

نویسندگان

  • Sebastian Pokutta
  • Gautier Stauffer
چکیده

We revisit the method of Chvátal, Cook, and Hartmann to establish lower bounds on the Chvátal-Gomory rank and develop a simpler method. We provide new families of polytopes in the 0/1 cube with high rank and we describe a deterministic family achieving a rank of at least (1+ 1/e)n− 1> n. Finally, we show how integrality gaps lead to lower bounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower Bounds for Chvátal-gomory Style Operators

Valid inequalities or cutting planes for (mixed-) integer programming problems are an essential theoretical tool for studying combinatorial properties of polyhedra. They are also of utmost importance for solving optimization problems in practice; in fact any modern solver relies on several families of cutting planes. The Chvátal-Gomory procedure, one such approach, has a peculiarity that differ...

متن کامل

A family of polytopes in the 0/1-cube with Gomory-Chvátal rank at least ((1+1/6)n - 4)

We provide a family of polytopes P ⊆ [0, 1] whose Gomory-Chvátal rank is at least ((1 + 1/6)n− 4).

متن کامل

Integer-empty polytopes in the 0/1-cube with maximal Gomory-Chvátal rank

We provide a complete characterization of all polytopes P ⊆ [0,1]n with empty integer hull whose Gomory-Chvátal rank is n (and, therefore, maximal). In particular, we show that the first GomoryChvátal closure of all these polytopes is identical.

متن کامل

Gomory-Chvátal Cutting Planes and the Elementary Closure of Polyhedra

The elementary closure P ′ of a polyhedron P is the intersection of P with all its GomoryChvátal cutting planes. P ′ is a rational polyhedron provided that P is rational. The Chvátal-Gomory procedure is the iterative application of the elementary closure operation to P . The Chvátal rank is the minimal number of iterations needed to obtain PI . It is always finite, but already in R2 one can con...

متن کامل

On the Chvátal Rank of Polytopes in the 0/1 Cube

Given a polytope P⊆Rn, the Chv atal–Gomory procedure computes iteratively the integer hull PI of P. The Chv atal rank of P is the minimal number of iterations needed to obtain PI . It is always nite, but already the Chv atal rank of polytopes in R can be arbitrarily large. In this paper, we study polytopes in the 0=1 cube, which are of particular interest in combinatorial optimization. We show ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Oper. Res. Lett.

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2011